Большинство современных грузовых автомобилей, прицепов к ним и автобусов оснащено пневматической тормозной системой, работа которой связана со взаимодействием большого количества управляющих и исполнительных элементов. Проведение проверки технического состояния и инструментального контроля указанной системы требует от диагностов хорошего понимания общих принципов ее построения и функционирования. Поэтому целесообразно остановиться на конструктивных особенностях данной системы более подробно.
Пневматическая тормозная система — это тормозная система, привод которой осуществляется посредством использования энергии сжатого воздуха. При этом под тормозным приводом подразумевается совокупность элементов, находящихся между органом управления и тормозом и обеспечивающих их функциональную взаимосвязь. В тех случаях, когда торможение осуществляется целиком или частично с помощью источника энергии, не зависящего от водителя, содержащийся в устройстве запас энергии также считается частью привода.

Рис. Пневматическая одноконтурная тормозная система
Привод, как правило, подразделяется на две функциональные части:
- привод управления
- энергетический привод
При этом управляющие и питающие магистрали, соединяющие буксирующие транспортные средства и прицепы, не рассматриваются в качестве частей привода.
Привод управления — это совокупность элементов привода, которые управляют функционированием тормозов, включая функцию управления необходимым запасом энергии.
Энергетический привод — совокупность элементов, которые обеспечивают подачу на тормоза энергии, необходимой для их функционирования, включая запас энергии, используемой для работы тормозных механизмов.
Тормоз — это устройство, в котором возникают силы, противодействующие движению транспортного средства. Тормоз может быть фрикционным (когда эти силы возникают в результате трения двух движущихся относительно друг друга частей транспортного средства), электрическим (когда эти силы возникают в результате электромагнитного взаимодействия двух движущихся относительно друг друга, но не соприкасающихся частей транспортного средства), гидравлическим (когда силы возникают в результате действия жидкости, находящейся между двумя движущимися относительно друг друга элементами транспортного средства), моторным (когда эти силы возникают в результате искусственного увеличения тормозящего действия двигателя, передаваемого на колеса).

Рис. Схема простейшего пневмотормоза автомобиля: 1 — ресивер; 2 — педаль; 3 — кран; 4 — тормозной цилиндр; 5 — пружина; 6 — шток тормозного механизма; 7 — тормозная колодка
Элементы системы фрикционного тормоза называются тормозными механизмами.
В пневматических тормозных системах приводом управления являются элементы пневмопривода, с помощью которых подаются сигналы на автоматическое или регулируемое срабатывание элементов энергетического привода. На управляющих элементах пневмопривода (тормозных кранах, клапанах, регуляторах и т.п.) вход управляющего пневмосигнала всегда обозначается цифрой 4. Такое же обозначение данного сигнала имеет место на функциональных и структурных схемах.
Энергетическим приводом в пневматических тормозных системах являются элементы, с помощью которых осуществляется питание сжатым воздухом элементов привода управления или исполнительных элементов энергетического привода (тормозных камер, энергоаккумуляторов, пневмоцилиндров и т.п.). Науправляющих элементах пневмопривода вход питающей магистрали всегда обозначается цифрой 1. Следует отметить, что в ряде случаев управляющий сигнал может одновременно выполнять функции питающего. В этом случае на элементах и схемах пневмопривода вход такого сигнала все равно обозначается цифрой 1.
Любой выходной пневматический сигнал или воздействие обозначается на элементах управления или схемах цифрой 2.
В случае, когда какие-либо элементы управления имеют несколько входов или выходов, относящихся к различным контурам тормозной системы, они маркируются цифрами (в порядке возрастания), следующими после обозначения, указанного выше (например, 11, 12, 21, 22 и т.п.).
Цифрой 3 на элементах тормозного привода обозначается связь с атмосферой.
Рассмотрим функционирование пневмопривода тормозной системы и отдельных ее элементов на примере системы грузового автомобиля, предназначенного для буксирования прицепа и, соответственно, прицепа, буксируемого таким тягачом.
В целях обеспечения надежности работы пневматический привод разделяется на несколько контуров, относительно независимых друг от друга. Первый из них называется питающим и выполняет функцию подготовки сжатого воздуха к применению в пневмосистеме в качестве рабочего тела.
Компрессор — это воздушный насос, который нагнетает воздух в питающий контур и, как правило, осуществляет первичную регулировку его давления. Регулятор давления управляет подачей сжатого воздуха компрессором с целью поддержания его давления в заданных пределах. Осушитель воздуха производит подготовку сжатого воздуха для использования в пневмосистеме.
Основная его задача — отделение от воздуха паров воды и от- фильтровывание различных примесей (в основном паров масла). В современных системах осушитель совмещает функции отделения от примесей и регулировки давления, поэтому в таких системах регулятор давления как отдельный узел отсутствует. Поскольку большинство осушителей работает по принципу регенерации, они имеют отдельный ресивер, с помощью которого обеспечивается регенеративная функция.
В некоторых видах пневмосистем может применяться предохранитель от замерзания, смешивающий со сжатым воздухом летучую низкозамерзающую жидкость для предотвращения замерзания воды, конденсирующейся на элементах тормозного привода при низких температурах. Однако эти устройства в настоящее время применяются редко, так как современные модели осушителей обеспечивают подготовку сжатого воздуха с достаточной эффективностью.


Рис. Схема пневмопривода тормозной системы: а — грузового автомобиля-тягача; б — прицепа; 1 — компрессор; 2 — регулятор давления; 3 — осушитель воздуха; 4 — регенерационный ресивер; 5 — четырехконтурный защитный клапан; 6-8 — ресиверы контуров пневмопривода; 9 — дополнительные потребители воздуха; 10 — манометр; 11 — контрольные и аварийные сигнализаторы; 12 — ножной тормозной кран; 13 — модулятор АБС переднего колеса; 14 — тормозная камера переднего колеса; 15 — обратный клапан; 16 — ручной тормозной кран; 17 — ускорительный клапан; 18 — регулятор тормозных сил задней оси; 19 — модулятор АБС заднего колеса; 20 — тормозная камера с энергоаккумулятором; 21 — тормозной кран управления тормозной системой прицепа; 22, 29 — питающие соединительные головки; 23, 30 — соединительные головки управляющей магистрали; 24 — электронный блок управления АБС тягача; 25 — контрольные лампы АБС; 26 — датчик АБС переднего колеса; 27 — датчик АБС заднего колеса; 28, 44 — соединительная вилка АБС; 31, 32 — фильтры воздуха; 33 — тормозной кран прицепа; 34 — ресивер; 35 — кран растормаживания прицепа; 36 — клапан соотношения давлений; 37 — регулятор тормозных сил передней оси; 38 — модулятор АБС передней оси; 39 — тормозные камеры передней оси; 40 — регулятор тормозных сил задней оси; 41 — модуляторы АБС средней и задней оси; 42 — тормозные камеры средней оси; 43 — тормозные камеры задней оси; 45 — электронный блок управления АБС прицепа; 46 — диагностический разъем АБС прицепа; 47 — датчики АБС передних колес; 48 — датчики АБС задних колес
После прохождения через осушитель сжатый воздух поступает к четырехконтурному защитному клапану. Основные функции данного устройства:
- разделение потока сжатого воздуха на независимые контуры
- обеспечение последовательного заполнения контуров сжатым воздухом после возрастания давления в одном из контуров до установленного значения
- обеспечение герметичности остальных контуров тормозной системы при разгерметизации или большом падении давления в одном из них
Четырехконтурный защитный клапан распределяет воздух по следующим контурам:
- двум независимым контурам рабочей тормозной системы тягача (I и II)
- контуру стояночной (аварийной) тормозной системы, а также питающему и управляющему контурам прицепа (III)
- контуру питания пневмоподвески и прочих дополнительных потребителей воздуха (9 на рисунке), например пневмоподвески кабины, сиденья водителя, пневмогидроусилителя сцепления, привода вспомогательной тормозной системы (на рисунке представлен краном управления моторным тормозом)
Каждый из контуров имеет исполнительные элементы, которые и реализуют конечную функцию непосредственного воздействия на тормозной механизм, а контур тормозной системы прицепа имеет соединительные головки для подключения к управляющей и питающей магистралям тягача.
В контурах I и II рабочей тормозной системы сжатый воздух после ресиверов подается к ножному тормозному крану в верхнюю и нижнюю секции соответственно. Внутри данного элемента происходит формирование либо чисто управляющего, либо комбинированного (управляющего и одновременно питающего) сигнала, который поступает непосредственно (как показано на рисунке для тормозов передних колес) или через определенные управляющие элементы 18 (как показано на рисунке для тормозов задних колес) к исполнительным элементам тормозных систем (14, 20). В качестве дополнительных управляющих элементов могут выступать ускорительные (релейные) клапаны, регуляторы тормозных сил, обеспечивающие функцию ускорительных кранов, краны быстрого оттормаживания и т.п. В качестве исполнительных элементов могут служить простые диафрагменные тормозные камеры либо комбинированные тормозные камеры с энергоаккумулятором.
В контуре III сжатый воздух поступает к ручному тормозному крану аварийной и стояночной тормозных систем, где формируется, как правило, чисто управляющий сигнал, который при поступлении на ускорительный клапан 17 аварийной тормозной системы производит подачу или сброс давления воздуха из секции энергоаккумулятора комбинированной тормозной камеры. Воздухом этого же контура осуществляется питание тормозного крана управления тормозами прицепа. Через данный кран происходит питание тормозной системы прицепа посредством соединительной головки, а также формируется управляющий сигнал как результат воздействия сигналов от тормозных кранов рабочей, аварийной и стояночной систем. Этот сигнал подается на соединительную головку управляющей магистрали.
К контурам тормозной системы подсоединяются контрольно- измерительные приборы. Обычно это манометры, указывающие давление в контурах I и II, или один общий манометр. Кроме того, имеются контрольные лампочки, которые сигнализируют о падении давления в контурах пневмопривода.
К пневмосистеме тягача подключен ряд компонентов АБС, реализующих данную функцию для всего комбинированного транспортного средства. В их число входят датчики АБС, считывающие значения угловой скорости колес, электронный блок управления, суммирующий и анализирующий сигналы датчиков и формирующий сигнал для выходного воздействия, модуляторы АБС (электромагнитные клапаны), играющие роль исполнительных механизмов, соединительная вилка прицепа, а также контрольные и диагностические лампы, подающие сигналы о техническом состоянии системы.
Прицеп снабжается сжатым воздухом от тягача через питающую соединительную головку, окрашенную в красный цвет. Пройдя через фильтр и тормозной кран прицепа, воздух поступает в ресивер.
Управляющий пневматический сигнал проходит через соединительную головку управляющей магистрали, окрашенную в желтый цвет, и, пройдя через фильтр, подается на тормозной кран прицепа. Под воздействием этого сигнала в указанном кране формируется выходной управляющий сигнал, который корректируется регуляторами тормозных сил в зависимости от загрузки транспортного средства. На полуприцепах и прицепах, имеющих центральное расположение осей, устанавливается один регулятор тормозных сил. Прицепы с разнесенным положением осей в управляющей магистрали тормозной системы передней оси могут иметь дополнительный клапан согласования давлений, служащий для обеспечения благоприятного соотношения давления воздуха между данными осями. Скорректированный управляющий сигнал подается к модуляторам АБС, которые на прицепах могут играть, кроме того, роль ускорительных клапанов. В зависимости от исполнения системы, а также для соблюдения нормативных требований один модулятор на прицепах может питать исполнительные механизмы оси, отдельного колеса или нескольких колес по одному из бортов прицепа. В пневматической части модуляторов управляющий сигнал преобразуется в сигнал, приводящий в действие исполнительные элементы (тормозные камеры). В ряде случаев на прицепах используются в качестве исполнительных элементов тормозные камеры с энергоаккумуляторами. При этом имеется дополнительная пневматическая магистраль, осуществляющая подачу сжатого воздуха в секции энергоаккумулятора, и устройство приведения в действие стояночной тормозной системы, находящееся вне кабины водителя.
Элементы АБС прицепа включают следующие устройства:
- колесные датчики
- блок управления
- модуляторы давления с функцией ускорительного клапана
Для проверки корректности работы системы служит диагностический разъем, а для электрического питания системы и поступления управляющих сигналов от тягача — соединительная вилка.
Колесные тормозные механизмы, являясь неотъемлемым звеном ходовой части автомобиля, должны обеспечивать стабильность заданных параметров эффективности торможения в процессе эксплуатации, иметь максимальную прочность и надежно функционировать в любых дорожных условиях. Помимо прочего необходимо обеспечить простоту обслуживания и ремонта важнейших с точки зрения безопасности деталей. В настоящее время на грузовиках и автобусах все шире стали использоваться дисковые тормозные механизмы, некогда ставшие символом прогресса в автомобилестроении.

Повышение надежности и снижение трудоемкости обслуживания — приоритеты в разработке дисковых тормозных механизмов для коммерческого транспорта.
Напомним, дисковый тормозной механизм по сравнению с барабанным имеет меньшую массу, более компактен и стабилен, легче охлаждается. Вдобавок ко всему меньшие зазоры между диском и колодками в расторможенном состоянии (0,05–0,1 мм) позволяют повысить быстродействие и передаточное число тормозного привода. Наконец, достигается более равномерное изнашивание фрикционных материалов в результате одинакового распределения давления по поверхности трения.

Облегченный тормозной механизм Haldex ModulT (DBT 22LT) рассчитан на использование в осях с посадочным диаметром шин 22,5”.
Конструктивно дисковый тормозной механизм обычно размещают в углублении обода колеса, что требует дополнительных средств для отвода тепла, например наличия внутренних вентиляционных каналов в тормозных дисках и отверстий в колесных. Такие меры обеспечивают оптимальное прохождение потока воздуха для уменьшения температуры тормозного механизма.
Корпуса (или скобы, как их называют специалисты) пневматических тормозных механизмов бывают неподвижные и подвижные (плавающие). В конструкции со скобой плавающего типа, применяемой в большинстве существующих конструкций дисковых тормозов для большегрузной техники, тормозная камера устанавливается на скобе с внутренней стороны диска. Скоба имеет возможность перемещаться совместно с тормозной колодкой в суппорте по направляющим штифтам. При подаче давления в тормозную камеру поршень прижимает к диску ближнюю, активную колодку. В свою очередь скоба, перемещаясь в противоположном направлении, прижимает к диску дальнюю, реактивную колодку. Для снижения вибрации подвижных деталей в механизме предусмотрены пластинчатые пружины. Именно поэтому производителями тормозных систем неоднократно делались попытки внедрения в среду коммерческого транспорта решений, ранее применимых только в легковых автомобилях. Речь идет о тормозных механизмах с фиксированной скобой, где поршни установлены по разные стороны от тормозного диска. Их основное преимущество — большая жесткость конструкции, а значит и высокая тормозная сила. Недостаток — худший теплоотвод.

Дисковые тормоза WABCO MAXX подходят для легких, средних и тяжелых грузовых автомобилей, автобусов и прицепной техники.
Проблему решают разными путями. Самый, пожалуй, необычный был реализован в тормозном механизме ModulD, разработанном компанией Haldex. Суть идеи заключалась в следующем. На ступицу с внешними шлицами монтируются два тормозных диска, возможность их взаимного перемещения достигается благодаря скользящей посадке. Внутренние рабочие поверхности дисков разделяет тормозная колодка. Еще две колодки размещены с внешних сторон дисков. За счет смещения дисков по шлицам происходит равномерное распределение усилия по поверхностям трения. Точно позиционированный пружинный механизм обеспечивает автоматическую регулировку зазора между колодкой и диском при компенсации износа. Максимальное значение тормозного момента составляет 27 кНм. В 2007 году такими механизмами оснащались некоторые модели прицепных осей Gigant. Планировалось распространить это решение на грузовые автомобили, однако этот проект так и не получил развития. Зато путь к совершенству продолжили дисковые тормозные механизмы с подвижной скобой. Далее о них и пойдет речь.

HALDEX MODULT
Сегодня приоритеты в разработке тормозных механизмов — это компактность, снижение массы тормозного механизма, повышение надежности и снижение трудоемкости обслуживания. В 2011 году компания Haldex представила новый тормоз для прицепных осей ModulT. Эта облегченная, но достаточно эффективная модель пришла на смену хорошо известному на рынке изделию ModulX. Полное наименование нового тормозного механизма, рассчитанного на использование в осях с посадочным диаметром шин 22,5”, — DBT 22LT.
Масса новинки в сборе с колодками составляет 31 кг. Это, как утверждает производитель, на 4,5 кг (или на 15 %!) меньше, чем у аналогичных конструкций, предлагаемых сегодня конкурентами. Существенное снижение веса узла, однако, не ставит под сомнение показатели надежности и стабильности торможения: как и у представителя предыдущего поколения тормозных механизмов — изделия ModulX, значение максимального тормозного момента при диаметре тормозного диска 430 мм составляет 20 кНм.
Инженеры Haldex считают, что современные тормозные системы для коммерческого транспорта сейчас как никогда требуют специфических решений исходя из ужесточения критериев, предъявляемых к изделиям автопрома. И поскольку автопроизводители стремятся к сокращению расхода топлива, облегченные конструкции надолго останутся в тренде. Использование дискового тормоза ModulТ позволяет сэкономить по 12 кг на каждую ось. Это означает, что трехосный полуприцеп, оснащенный такими тормозными механизмами, сможет взять на борт дополнительные 36 кг полезного груза.
Оптимизация массогабаритных параметров нового изделия проводилась несколькими путями. Во-первых, все детали тормозного механизма были просчитаны методом конечных элементов. На основании этих расчетов изначально задуманный дизайн подвергся существенной переработке.
Во-вторых, внесены изменения в кинематическую схему, отвечающую за передачу усилия от тормозной камеры к колодкам. Вместо обычной для изделий Haldex двухпоршневой схемы (что означает применение двух резьбовых втулок-толкателей) решено использовать однопоршневую. Наконец, в подвижном суппорте ModulT используются всего два направляющих стальных штифта, а не четыре, как в предыдущей модели.
Примененный в ModulT однопоршневой механизм благодаря использованию специальной конструкции резьбового упора обеспечивает равномерное распределение усилия прижима тормозных колодок к тормозному диску и, следовательно, лучшую равномерность износа фрикционного материала. Помимо прочего это минимизирует риск теплового разрушения колодок и диска.
Среди других важных особенностей «тэшки» следует упомянуть усиленную герметизацию направляющих штифтов подвижной скобы, применение необслуживаемых подшипников и использование тефлонового покрытия для улучшения скольжения в паре трения. Особая конструкция гофрированного пыльника позволяет надежно защитить резьбовую втулку нажимного устройства от внешних загрязнений, что в целом способствует повышению долговечности узла.
Если говорить об особенностях техобслуживания, в данном случае все операции максимально упрощены. Взять, к примеру, работу по демонтажу изношенных тормозных колодок, для чего достаточно сдвинуть фиксирующую их зажимную скобу. При этом не требуется специнструмент, а прикладываемое усилие минимально. Опционно доступен измеритель износа, показывающий остаточный ресурс колодок в процентах. В базовом исполнении ModulT предназначен для прицепных осей с нагрузкой до 9 тонн. Имеется отдельная модификация, которая рассчитана на применение в грузовиках и автобусах с ограниченным монтажным пространством в пределах ходовой части.

WABCO MAXX
На выставке COMTRANS 2017 компания WABCO продемонстрировала ряд новых технологий, которые повышают безопасность и эффективность в работе коммерческого транспорта. В частности, гостям мероприятия был представлен однопоршневой пневматический дисковый тормоз MAXX — один из самых легких и эффективных тормозных механизмов для коммерческого транспорта. Устройство c подвижной скобой приводится в действие при помощи тормозной камеры, смонтированной на корпусе механизма. Для компенсации износа колодок и диска тормоз MAXX оборудован автоматическим регулятором зазора. В качестве опции предлагается система мониторинга остаточной толщины тормозных колодок. Посредством встроенного в плавающую скобу потенциометра это оборудование измеряет величину хода поршня в резьбовой втулке и высчитывает степень износа фрикционного материала. Вся информация поступает в систему бортовой диагностики автомобиля.
Монтаж диафрагменного механизма непосредственно на скобе позволяет получить очень компактный узел, а значит, оптимально использовать компоновочное пространство на транспортном средстве. Дисковые тормоза MAXX подходят к колесам с посадочным диаметром шин от 17,5 до 22,5” для легких, средних и тяжелых грузовых автомобилей, автобусов и прицепной техники. Таким образом, инновационные тормозные механизмы MAXX от компании WABCO могут быть применены совместно с колесными дисками практически всех размеров, используемых на коммерческом транспорте во всем мире.

В России WABCO поставляет тормозные механизмы MAXX на конвейер Горьковского автозавода, этими компонентами оснащаются новые модели грузовиков производства «Группы ГАЗ», в частности «ГАЗон NEXT», где используется пневматическая тормозная система.
ДМИТРИЙ МЕДВЕДЕВ, генеральный директор ООО «ВАБКО РУС»
Характеристики дискового тормоза превышают показатели барабанного. Основные преимущества нового тормоза MAXX — меньше компонентов, впечатляюще легкий вес, высокая надежность, повышенная производительность даже на плохих дорогах. MAXX оснащен новой моноблочной тормозной скобой и усиленным однопоршневым зажимным механизмом, который обеспечивает повышенные тормозные моменты со значением до 30 кНм для обеспечения максимальной безопасности управления автомобилем. Запатентованный однопоршневой тормозной механизм равномерно передает усилие от толкателя к колодке. Сниженное в два раза количество деталей, по сравнению с двухпоршневой системой, позволило повысить надежность всего механизма и снизить вес. Балансировочная пластина дает преимущество, обеспечивая равномерный износ тормозных колодок.
К слову, по сложности обслуживания тормоз MAXX ничем не отличается от двухпоршневой системы. При этом меньше времени требуется для его проверки, а механизм отвода и подвода колодок работает четче.
Как работает тормозная система с пневматическим приводом?
Итак, как же заставить воздух работать на нас? Чтобы разобраться в этом, давайте рассмотрим общее устройство пневмотормозов. Простейшая схема состоит из таких элементов:
- компрессор;
- ресивер (воздушный баллон);
- кран;
- тормозной цилиндр (камера);
- колодки;
- педаль.
Схема простейшего пневмотормоза автомобиля
Работают вышеперечисленные механизмы вместе следующим образом. Одним из ключевых игроков команды выступает компрессор, который постоянно во время движения закачивает под давлением воздух в ресиверы.
В остальной части системы в это время держится низкое давление, но как только Вы нажимаете педаль – всё меняется.
В момент нажатия поворотная пробка крана изменяет положение и соединяет ресиверы с тормозным цилиндром. Попавший в него под большим давлением воздух, давит на диафрагму, которая в свою очередь перемещает шток, соединённый одним концом с разжимным кулаком.
Этот кулак последнее препятствие между энергией сжатого воздуха и тормозными колодками, которые сдаются под его напором и зажимают тормоза.
Когда педаль отпущена, кран возвращается в исходное положение, тем самым соединяя тормозную камеру с атмосферой. Давление в ней падает, тормоза отпускаются.
Основные составляющие пневматической тормозной системы
Обсуждаемая тормозная система делится на несколько основных составляющих, благодаря которым весь узел может функционировать должным образом. Естественно, приведенный ниже список механизмов является неполным, но в нем, как уже говорилось, будет самое главное:
- Привод управления – данная тормозная система подразумевает под приводом управления наличие элементов пневмопривода. При помощи этих частей, осуществляется автоматическое или намеренное регулирование некоторых частей энергетического привода, о котором поговорим в следующем пункте.
- Энергетический привод – этот механизм пневматической тормозной системы представляет из себя набор элементов (деталей) благодаря которым происходит обогащение воздухом, находящимся под давлением, привода управления. Таким образом, механизмы представленные в первых двух пунктах (этом и предыдущем), так сказать дополняют один другого.
- Тормоз – самое “центровое” устройство! Именно здесь, в этом механизме сосредоточены все силы, сопротивляющиеся дальнейшему движению машины в какую-либо сторону. Тормоз бывает нескольких разных типов:
- Фрикционный – останавливающая величина появляется во время соприкосновения двух частей транспортного средства, которые движутся, друг другу навстречу.
- Электрический – те же самые силы трения возникают под воздействием электромагнитного поля, но при этом объекты не соприкасаются.
- Гидравлический – тут опять-таки присутствуют два объекта, идущие навстречу один другому, но взаимодействие происходит при возрастании давления в жидкости между ними.
- Моторный – тормозящая величина возрастает в результате того, что двигатель искусственным образом повышает тормозящее действия, при этом кинетика передается прямиком на колеса машины.
- Компрессор – с подобным устройством многие встречались в бытовых ситуациях, не относящихся к машинам. По сути, это воздушный насос, отвечающий за то, чтобы тормозная система получала необходимые количества воздуха, а также регулирующий давление внутри системы. В составе этого механизма присутствует регулятор давления, на который и возлагается миссия слежения и управления подачей сжатого кислорода компрессором, для того чтобы значения колебались в строго заданных разработчиками пределах. Если показания датчика нарушаются, система может не выдержать и дать сбой, вследствие чего, есть шанс появления неисправности в тормозной системе грузовика.
- В компрессоре также присутствует подсушиватель воздуха, основной задачей которого является подготавливать воздух непосредственно для пневмосистемы, убирая из него излишние молекулы влаги, испарения от воды, а также других вредоносных примесей, таких как масляные отложения и прочее.
Стоит также сказать, что подавляющее большинство современных осушителей объединяют в себе помимо основных функций, еще и регенерирующую, а это значит, что в их комплектующие также входит и ресивер.
- Тормозная система может быть снабжена еще одним интересным агрегатом, однако он задействуется далеко не везде, и имеет место быть в основном в серьезных комплектациях, называется он предохранителем от замерзаний. Принцип его работы и назначение очень просты, в холодное время года, данный девайс помешивает в баллоны со сжатым воздухом специальный химический состав. Таким образом, конденсат, который в любом случае будет присутствовать на деталях системы, не будет замерзать и создавать дополнительные проблемы.

Пневматические тормоза: только воздух нам поможет
Почему лишь пневматический привод подходит для подобных транспортных средств? На самом деле вся проблема в человеке, а вернее в его ограниченных силах.
Эффективность привычных для нынешних легковушек гидравлических тормозов и уже тем более механических в любом варианте исполнения зависит от силы нажатия на педаль, и даже вакуумный усилитель, призванный помочь водителю, не всесилен.
А теперь представьте, с какой силой надо давить на педаль, чтобы остановить многотонный грузовик с прицепом.
Даже если создать гидравлическую систему, нагнетаемую, например, мощным насосом, то для того чтобы погасить энергию движения столь крупной техники, давление пришлось бы повысить до огромных величин, что влияло бы на надёжность всей схемы.
Как видите, тормозная система, это крайне сложный и важный механизм для любого автомобиля, особенно для тяжелых и негабаритных грузовых машин. Так что знать принцип ее работы, всевозможные тонкости строения и наличие как можно более большого количества деталей этого узла, крайне важно. Эти знания помогут вам правильно реагировать на различные ситуации происходящие на дороге и действительно могут спасти не мало жизней.