Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.
Содержание
ДВС что это?
Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.
ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.
Основные механизмы двигателя внутреннего сгорания
Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.
1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.
2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.
3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.
4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.
5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:
• Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.
• Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.
6. Шатун служит соединительным элементом между поршнем и коленчатым валом.
7. Коленчатый вал преобразует поступательные движения поршней во вращательные.
8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.
Это интересно! Самые мощные в мире ДВС выпускает фирма Wartsila. Они предназначены для кораблей. Их мощность достигает 110 000 л.с., что равно 80 мВт.
Принцип работы двигателя внутреннего сгорания
В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду.Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.
Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.
Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.
Впуск
Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.
Сжатие
Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.
Рабочий ход
Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.
Выпуск
Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.
После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.
А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.
Достоинства и недостатки
Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.
Преимущества ДВС:
1. Возможность длительного передвижения на полном баке.
2. Небольшой вес и объём бака.
3. Автономность.
4. Универсальность.
5. Умеренная стоимость.
6. Компактные размеры.
7. Быстрый старт.
8. Возможность использования нескольких видов топлива.
Недостатки ДВС:
1. Слабый эксплуатационный КПД.
2. Сильная загрязняемость окружающей среды.
3. Обязательное наличие коробки переключения передач.
4. Отсутствие режима рекуперации энергии.
5. Большую часть времени работает с недогрузом.
6. Очень шумный.
7. Высокая скорость вращения коленчатого вала.
8. Небольшой ресурс.
Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
В настоящее время на ТС применяются в основном четырехтактные поршневые ДВС.
Одноцилиндровый двигатель (рис. а) содержит следующие основные детали: цилиндр 4, картер 2, поршень 6, шатун 3, коленчатый вал 1 и маховик 14. Одним своим концом шатун соединяется шарнирно с поршнем при помощи поршневого пальца 5, а другим концом — также шарнирно с кривошипом коленчатого вала.
При вращении коленчатого вала происходит возвратно-поступательное движение поршня в цилиндре. За один оборот коленчатого вала поршень совершает по одному ходу вниз и вверх. Изменение направления движения поршня происходит в мертвых точках — верхней (ВМТ) и нижней (НМТ).
Верхней мертвой точкой называется самое удаленное от коленчатого вала положение поршня (крайнее верхнее при вертикальном расположении двигателя), а нижней мертвой точкой — самое близкое к коленчатому валу положение поршня (крайнее нижнее при вертикальном расположении двигателя).

Рис. Принципиальная схема (а) одноцилиндрового четырехтактного поршневого двигателя внутреннего сгорания и его схема (б) для определения параметров: 1 — коленчатый вал; 2 — картер; 3 — шатун; 4 — цилиндр; 5 — поршневой палец; 6 — поршень; 7 — впускной клапан; 8 — впускной трубопровод; 9 — распределительный вал; 10 — свеча зажигания (бензиновые и газовые двигатели) или топливная форсунка (дизели); 11 — выпускной трубопровод; 12 — выпускной, клапан; 13 — поршневые кольца; 14 — маховик; D — диаметр цилиндра; r — радиус кривошипа; S — ход поршня
Расстояние S (рис. б) между ВМТ и НМТ называется ходом поршня. Его рассчитывают по формуле:
S = 2r, где r — радиус кривошипа коленчатого вала.
Ходом поршня и диаметром цилиндра D определяются основные размеры двигателя. В транспортных двигателях отношение S/D составляет 0,7 —1,5. При S/D < 1 двигатель называется короткоходным, а при S/D > 1 — длинноходным.
При перемещении поршня вниз из ВМТ в НМТ объем над ним изменяется от минимального до максимального. Минимальный объем цилиндра над поршнем при его положении в ВМТ называется камерой сгорания. Объем цилиндра, освобождаемый поршнем при его перемещении из ВМТ в НМТ, называется рабочим. Сумма рабочих объемов всех цилиндров представляет собой рабочий объем двигателя. Выраженный в литрах, он называется литражом двигателя. Полный объем цилиндра определяется суммой его рабочего объема и объема камеры сгорания. Этот объем заключен над поршнем при его положении в НМТ.
Важной характеристикой двигателя является степень сжатия, определяемая отношением полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступивший в цилиндр заряд (воздух или топливо-воздушная смесь) при перемещении поршня из НМТ в ВМТ. У бензиновых двигателей степень сжатия составляет 6 — 14, а у дизелей — 14 — 24. Принятая степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Работа поршневого ДВС основана на использовании давления на поршень газов, образующихся при сгорании в цилиндре смесей топлива и воздуха. В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания 10, а в дизелях — вследствие сжатия. Различают понятия горючей и рабочей смесей. Горючая смесь состоит из топлива и чистого воздуха, а рабочая включает в себя также оставшиеся в цилиндре отработавшие газы.
Совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом. Рабочий цикл четырехтактного двигателя состоит из четырех процессов, каждый из которых происходит за один ход поршня (такт), или пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала. Следует отметить, что в общем случае понятия «рабочий процесс» и «такт» не являются синонимами, хотя для четырехтактного поршневого двигателя они практически совпадают.
Принцип работы четырёхтактного двигателя внутреннего сгорания
В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу.
Устройство двигателя внутреннего сгорания
Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.
Давайте ещё раз повторим определения, а затем посмотрим это видео.
Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.
- Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
- Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
- Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
- Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.
И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.
Как работает охлаждение?
Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.
Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.
Рассмотрим рабочий цикл бензинового двигателя
Первый такт рабочего цикла — впуск. Поршень перемещается из ВМТ в НМТ, при этом впускной клапан 7 открыт, а выпускной 12 закрыт, и горючая смесь под действием разрежения поступает в цилиндр. Когда поршень достигает НМТ, впускной клапан закрывается, и цилиндр оказывается заполненным рабочей смесью. У большинства бензиновых двигателей горючая смесь формируется вне цилиндра (в карбюраторе или впускном трубопроводе 8).
Следующий такт — сжатие. Поршень перемещается обратно из НМТ в ВМТ, сжимая рабочую смесь. Это необходимо для ее более быстрого и полного сгорания. Впускной и выпускной клапаны закрыты. Степень сжатия рабочей смеси во время такта сжатия зависит от свойств применяемого бензина, и в первую очередь от его антидетонационной стойкости, характеризуемой октановым числом (у бензинов оно составляет 76 — 98). Чем выше октановое число, тем больше антидетонационная стойкость топлива. При чрезмерно высокой степени сжатия или низкой антидетонационной стойкости бензина может произойти детонационное (в результате сжатия) воспламенение смеси и нарушиться нормальная работа двигателя. К концу такта сжатия давление в цилиндре возрастает до 0,8… 1,2 МПа, а температура достигает 450…500°С.
За тактом сжатия следует расширение (рабочий ход), когда поршень из ВМТ перемещается обратно вниз. В начале этого такта, даже с некоторым опережением, горючая смесь воспламеняется от свечи зажигания 10. При этом впускной и выпускной клапаны закрыты. Смесь сгорает очень быстро с выделением большого количества теплоты. Давление в цилиндре резко возрастает, и поршень перемещается до ЦМТ, приводя во вращение через шатун 3 коленчатый вал 1. В момент сгорания смеси температура в цилиндре повышается до 1800… 2 000 °С, а давление — до 2,5…3,0 МПа.
Последний такт рабочего цикла — выпуск. В течение этого такта впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь вверх от НМТ к ВМТ, выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной трубопровод 11. Затем рабочий цикл повторяется.
Рабочий цикл дизеля имеет некоторые отличия от рассмотренного цикла бензинового двигателя. При такте впуска по трубопроводу 8 в цилиндр поступает не горючая смесь, а чистый воздух, который во время следующего такта сжимается. В конце такта сжатия, когда поршень подходит к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, под большим давлением впрыскивается дизельное топливо в мелкораспыленном состоянии. Соприкасаясь с воздухом, имеющим вследствие сжатия высокую температуру, частицы топлива быстро сгорают. Выделяется большое количество теплоты, в результате чего температура в цилиндре повышается до 1700…2000 °С, а давление — до 7…8 МПа. Под действием давления газов поршень перемещается вниз — происходит рабочий ход. Такты выпуска у дизеля и бензинового двигателя аналогичны.
Для того чтобы рабочий цикл в двигателе происходил правильно, необходимо согласовать моменты открытия и закрытия его клапанов с частотой вращения коленчатого вала. Это осуществляется следующим образом. Коленчатый вал с помощью зубчатой, цепной или ременной передачи приводит во вращение еще один вал двигателя — распределительный 9, который должен вращаться вдвое медленнее коленчатого. На распределительном валу имеются профилированные выступы (кулачки), которые непосредственно или через промежуточные детали (толкатели, штанги, коромысла) перемещают впускные и выпускные клапаны. За два оборота коленчатого вала каждый клапан, впускной и выпускной, открывается и закрывается только один раз: во время такта впуска и выпуска соответственно.
Уплотнение между поршнем и цилиндром, а также удаление со стенок цилиндра излишнего масла обеспечивают специальные поршневые кольца 13.
Коленчатый вал одноцилиндрового двигателя вращается неравномерно: с ускорением во время рабочего хода и замедлением при остальных, вспомогательных тактах (впуск, сжатие и выпуск). Для повышения равномерности вращения коленчатого вала на его конце устанавливают массивный диск — маховик 14, который во время рабочего хода накапливает кинетическую энергию, а в течение остальных тактов отдает ее, продолжая вращаться по инерции.
Однако несмотря на наличие маховика, коленчатый вал одноцилиндрового двигателя вращается недостаточно равномерно. В моменты воспламенения рабочей смеси картеру двигателя передаются значительные толчки, что быстро выводит из строя сам двигатель и детали его крепления. Поэтому одноцилиндровые двигатели применяются редко, в основном на двухколесных ТС. На других машинах устанавливают многоцилиндровые двигатели, которые обеспечивают более равномерное вращение коленчатого вала за счет того, что рабочий ход поршня в разных цилиндрах совершается неодновременно. Наиболее широкое распространение получили четырех-, шести-, восьми- и двенадцатицилиндровые двигатели, хотя на некоторых ТС используются также трех- и пятицилиндровые.
Многоцилиндровые двигатели обычно имеют рядное или V-образное расположение цилиндров. В первом случае цилиндры установлены в одну линию, а во втором — в два ряда под некоторым углом друг к другу. Этот угол для различных конструкций составляет 60… 120°; у четырех- и шестицилиндровых двигателей он обычно равен 90°. По сравнению с рядными V-образные двигатели такой же мощности имеют меньшую длину, высоту и массу. Нумерация цилиндров производится последовательно: сначала с передней части (носка) нумеруются цилиндры правой (по ходу движения машины) половины двигателя, а затем, также начиная с передней части, левой половины.
Равномерная работа многоцилиндрового двигателя достигается в том случае, если чередование рабочего хода в его цилиндрах происходит через равные углы поворота коленчатого вала. Угловой интервал, через который будут равномерно повторяться одноименные такты в разных цилиндрах, можно определить делением 720° (угол поворота коленчатого вала, при котором совершается полный рабочий цикл) на число цилиндров двигателя. Например, у восьмицилиндрового двигателя угловой интервал равен 90°.
Последовательность чередования одноименных тактов в разных цилиндрах называется порядком работы двигателя. Порядок работы должен быть таким, чтобы в наибольшей степени уменьшить отрицательное влияние на работу двигателя инерционных сил и моментов, возникающих из-за того, что поршни движутся в цилиндрах неравномерно и их ускорение меняется по величине и направлению. У четырехцилиндровых рядных и V-образных двигателей порядок работы может быть такой: 1 — 2 — 4 — 3 или 1 — 3 — 4—2, у шестицилиндровых рядных и V-образных двигателей — соответственно 1 — 5—3 — 6 — 2—4 и 1 — 4 — 2 — 5 — 3 — 6, а у восьмицилиндровых V-образных двигателей — 1 — 5 — 4 — 2— 6 — 3 — 7 — 8.
С целью более эффективного использования рабочего объема цилиндров и повышения их мощности в некоторых конструкциях поршневых двигателей осуществляют наддув воздуха с соответствующим увеличением количества впрыскиваемого топлива. Для обеспечения наддува, т. е. создания на входе в цилиндр избыточного давления, чаще всего применяют газотурбинные компрессоры (турбокомпрессоры). В этом случае для нагнетания воздуха используется энергия отработавших газов, которые, выходя с большой скоростью из цилиндров, вращают турбинное колесо турбокомпрессора, установленное на одном валу с насосным колесом. Кроме турбокомпрессоров применяют также механические нагнетатели, рабочие органы которых (насосные колеса) приводятся во вращение от коленчатого вала двигателя с помощью механической передачи.
Для лучшего наполнения цилиндров горючей смесью (бензиновые двигатели) или чистым воздухом (дизели), а также более полной их очистки от отработавших газов клапаны должны открываться и закрываться не в моменты нахождения поршней в ВМТ и НМТ, а с некоторым опережением или запаздыванием. Моменты открытия и закрытия клапанов, выраженные в градусах через углы поворота коленчатого вала относительно ВМТ и НМТ, называются фазами газораспределения и могут быть представлены в виде круговой диаграммы.
Впускной клапан начинает открываться во время такта выпуска предыдущего рабочего цикла, когда поршень еще не достиг ВМТ. В это время отработавшие газы выходят через выпускной трубопровод я вследствие инерции потока увлекают за собой из открывшегося впускного трубопровода частицы свежего заряда, которые начинают наполнять цилиндр даже при отсутствии разрежения в нем. К моменту прихода поршня в ВМТ и началу его движения вниз впускной клапан уже открыт на значительную величину, и цилиндр быстро наполняется свежим зарядом. Угол а опережения открытия впускного клапана у различных двигателей колеблется в пределах 9…33°. Впускной клапан закроется тогда, когда поршень пройдет НМТ и начнет двигаться вверх на такте сжатия. До этого времени свежий заряд заполняет цилиндр по инерции. Угол р запаздывания закрытия впускного клапана зависит от модели двигателя и составляет 40… 85°.

Рис. Круговая диаграмма фаз газораспределения четырехтактного двигателя: а — угол опережения открытия впускного клапана; р — угол запаздывания закрытия впускного клапана; у — угол опережения открытия выпускного клапана; б — угол запаздывания закрытия выпускного клапана
Выпускной клапан открывается во время рабочего хода, когда поршень еще не достиг НМТ. При этом работа поршня, необходимая для вытеснения отработавших газов, уменьшается, компенсируя некоторую потерю работы газов из-за раннего открытия выпускного клапана. Угол Y опережения открытия выпускного клапана составляет 40…70°. Выпускной клапан закрывается несколько позднее прихода поршня в ВМТ, т. е. во время такта впуска следующего рабочего цикла. Когда поршень начнет опускаться, оставшиеся газы по инерции еще будут выходить из цилиндра. Угол 5 запаздывания закрытия выпускного клапана составляет 9… 50°.
Угол а + 5, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Вследствие того что этот угол и зазоры между клапанами и их седлами в данном случае малы, утечки заряда из цилиндра практически нет. Кроме того, наполнение цилиндра свежим зарядом улучшается за счет большой скорости потока отработавших газов через выпускной клапан.
Углы опережения и запаздывания, а следовательно, и продолжительность открытия клапанов должны быть тем больше, чем выше частота вращения коленчатого вала двигателя. Это связано с тем, что у быстроходных двигателей все процессы газообмена происходят быстрее, а инерция заряда и отработавших газов не изменяется.

Рис. Принципиальная схема газотурбинного двигателя: 1 — компрессор; 2 — камера сгорания; 3 — турбина компрессора; 4 — силовая турбина; М — вращающий момент, передаваемый к трансмиссии машины
Принцип действия газотурбинного двигателя (ГТД) поясняет рисунок. Воздух из атмосферы засасывается компрессором 2, сжимается в нем и подается в камеру сгорания 2, куда также подается топливо через форсунку. В этой камере происходит процесс горения топлива при постоянном давлении. Газообразные продукты сгорания поступают р турбину компрессору 3, где часть их энергии затрачивается на приведение в действие компрессора, нагнетающего воздух. Оставшаяся часть энергии газов преобразуется в механическую работу вращения свободной или силовой турбины 4, которая через редуктор связана с трансмиссией машины. При этом в турбине компрессора и свободной турбине происходит расширение газа с уменьшением давления от максимального значения (в камере сгорания) до атмосферного.
Рабочие части ГТД в отличие от аналогичных элементов поршневого двигателя постоянно подвергаются воздействию высокой температуры. Поэтому для ее снижения в камеру сгорания ГТД необходимо подавать значительно больше воздуха, чем это требуется для процесса сгорания.
Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.
Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!